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ABSTRACT

Passive dampers composed of coils of multi-strand wire rope are
investigated. Analytical results range from those produced by complex
NASTRAN models to those of a Coulomb damping model with variable
friction force. The latter agrees well with experiment. The Coulomb
model is also utilized to generate hysteresis loops. Various other
models related to early experimental investigations are described.
Significant closed-form static solutions for physical properties of
single—and multi-strand wire ropes are developed for certain specific
geometries and loading conditions. NASTRAN models concentrate on model
generatipn and mode shapes of 2-strand and 7-strand straight wire ropes

with interfacial forces.
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l. INTRODUCTION

Space activities have revitalized the importance of damping
investigations. There has been a significant increase in the number of
papers on the topic in the literature and a number of research
investigations have been initiated. Long of interest to many, damping
is receiving increased attention due to a variety of actual and
potential applications; among them: large space structures, space
structures with stringent pointing requirements, computer controlled
flexible structures, flexible manufacturing systems, composite
materials, swept-forward wings, SDI structural dynamics, and others.

The primary interest of this investigation centers on vibration
isolators constructed of wire rope. Such isolators have‘been known to
have good characteristics for some time, but have not been analvzed to a
thorough enough degree to be yet used in space applications. This lack
of analysis is at least partly due to the difficulty in modeling the
dynamics of wire rope isolators.

Wire rope is, from the basic point of view, simply several strands
of wire twisted, or wound, together. Some types are commonly called
"cable” and are used to carry electricity, support bridges and "cable
cars,"” raise and lower heavy loads and in many other practical ways. A
less obvious, but equally important, use of wire rope is in shock and
vibration isolation devices (Silverman, 1985; Gilbert, 1976). The
structure of wire rope provides many interfaces at which a portion of

the relative motion of strands of wire is converted by friction into

—
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heat, thereby dissipating vibrational energy (Harris and Crede, 1976).

Furthermore, the stiffness of wire rope structures can be tailored to
provide support and restoring forces. Stiffness and damping are
adjusted by varying wire diameter, the number of strands, pretensioning
and the arrangement of lengths of the wire rope. Commonly, helical
coils of ropes are fixed in clamps (see Fig. 1.1) to form individual
shock and/or vibration isolators. The isolators are used to support and
isolate communications equipment in vehicles which are subjected to
large magnitude, short-term accelerations; i.e., "shocks.” In addition
to absorbing shock, the internal, or system, damping, (Silverman, 1985)
of the wire rope devices provides vibrational isolation over wide ranges

of frequencies and amplitudes.

The damping characteristics of wire rope and vibration isolators ‘
made from it are not well understood from the theoretical standpoint.
Apparently, the design of individual isolators is accomplished by
experimentation by engineers with considerable experience in applica-
tions of these devices (Silverman, 1985; Jewell, 1984). Realistic
mathematical models of wire rope isolators would be useful in the design
process and perhaps would allow the achievement of the confidence levels
in isolator characteristics needed for more applications in which
damping rates and dynamic response must be very accurately known to

prevent resonance and control interaction problems.




2. DAMPING CONSIDERATIONS

Literature Discussion

Aside from the rather obvious use of isolators as passive damping
devices for equipment mounting and/or isolation of rotating devices, it
has been concluded (Rogers, et al., 1986, and others) that the use of
passive plus active damping devices results in a reduced number of
active control components and reduced energy and power requirements. A
combination of the two types of damping can lead to more robust and
reliable systems, and less expensive systems.

An examination of the literature concerning damping indicates the
widely differing approaches to its investigation. The most significant
paper in this regard which relates to wire rope.damping is that by
Pivovarov and Vinogradov (1985). Their study, however, was limited to
excitation of straight wire rope which suspended a mass in pendulum
fashion. Experimental hysteresis loops (shapes only) are given and
several single nonlinear differential equations are solved in an attempt
to simulate the phenomena.

The only other two items of literature found which discuss wire
rope damping directly are LeKuch and Silverman (1983) in a designer
notebook setting-—a guide to isolator selection, and Kerley (1984) who
just mentions wire rope "“complex cable"” arrangements as one type of
passive damping device.

Several of the other literature papers, while not addressing wire
rope damping at all, are very related to some of the tasks undertaken

3
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during this research. One is the work of Badrakan (1985) dealing with
separating and determining combined dampings from free vibrations.
Another is the paper by Vakakis (1985) on unidirectional isolators

(multiple mass, many degrees of freedom models).

Summary of Techniques

Perhaps the best source for damping considerations is the new book
by Nashif, Jones, and Henderson (1985), although again, no mention of
wire rope damping is made therein. Their emphasis is on single degree
of freedom hysteretic, i.e., k(l+in), damping. A summary of their
suggested methods of determining damping follows:

a. Half-Power Bandwidth: While probably not appropriate for high
damping devices such as the isolators of interest in this work, the
technique involves determining Aw énd Wpreg Where Aw is the bandwidth
wy-w], between two amplitudes usually taken as 0.707 Ap,y. Apsx is the

response peak at wpage For viscous damping, this results in:

Aw

m = 2§ (2'1)
res

while for hysteretic damping:

LY R perey (2.2)

)
res
Note that the right-—hand side of Eq. (2.2) equals n for n<<l.
b. Resonant Response Amplitude: In this method, an amplitude A is

defined, Eq. (2.3), and determined experimentally.




A = (wp)res _ amplitude of response at resonance (2.3)
F/k static displacement *
_For viscous damping, Eq. (2.3) becomes
A= —L—— = = for ¢l (2.4)
2;/1-;2 :
while for hysteretic damping:
2
R 1 for n<<l (2.5)

c. Use of a Nyquist Diagram which is equivalent to a, above.
d. Hysteresis Loops: The area contained within a force versus
deflection plot over one cycle of motion equals the energy dissipated
per cycle, Dg. The simplest example of this is that of base excitatiom
of a single degree of freedom system which can be shown to yield, for

viscous damping:

Dg = mc wW.2 (2.6)
and for hysteretic damping:

Dg = mk n W2 (2.7)

In Eqs. (2.6) and (2.7), Wy is the relative displacement between the
single mass and the base, w is the forcing frequency, while ¢, k, and n
are the properties of the viscous, ¢, and hysteretic, k(1l+in), dampers.

Expressions which are alternatives to Eqs. (2.6) and (2.7) are
derived by Nashif, et al., and are

mTnk g“ W02

"D

S (2.6a)

(1-£2)2 + n2



and

TewEY W2
D, = 2 (2.7a)
(1-£2)2 + (cw/k)?

In Eqs. (2.6a) and (2.7a), two new terms appear. They are:

2=mm
g K

Wo amplitude of harmonic steady state base motion

While this technique seems to hold the greatest promise for application
to the isolators of interest, it should be noted that all equations
(2.6=7a) are for single degree of freedom models with constant
properties.

e. Quadrature Bandwidth: In this method, the imaginary part of
;he response, % is plotted versus frequency and two points on

opposite sides of the peak are located by-% &~+ The Aw. between these

Q Q

points is then found. For n = /2, the relationship can be shown to be:

.
= V1l + 0.6436n - VY1 - 0.6436n (2.8)
“res

If n<<l, then using the binomial theorem, Eq. (2.8) becomes

29

= (1 + 0.3218n) = (1 = 0.3218n) + ... = 0.6436n (2.9)
wres
Hence,
AwQ
n = 1.554 (2'10)
u’1"es

f. Dynamic Stiffness: For a single degree of freedom hysteretic

model, the complex ratio of displacement excitation gives the form:1

lcraig, R. R., Structural Dynamics, Wiley, 1981, p. 10l.




Wp* 1
CTF T X - mZ + ikn (2.1D)
which can also be written in the form
o= lale!®=a + ta, (2.12)

If |a| and ¢ are measured experimentally, Nashif, et al., note the
difficulty (though not impossible) of determining k and n by solving the
four equations for Ial, ¢, ap, and aQ.2 Alternatively, one may define

the dynamic stiffness as K = 1/a. Therefore
K = k-mw? + ikn = Kp + iKg (2.13)

where Kp is called the direct dynamic stiffness and
KQ is the quadrature dynamic stiffness.

Equating real and imaginary parts of Eq. (2.13) yields

K =k - mp2 = S8 20 (2.14)
0 o]
= kn=3in ¢ (2.15)

K
Q o
Plotting Kp + mw? versus frequency and KQ/(KD + mw2) versus

frequency yields

k = Kp + mw? (2.16)
K
- —2 (2.17)
n KD + mw

Nashif, et al., note that this method is very helpful when n is high.
Turning from single degree of freedom considerations, techniques

for damping analysis vary widely. The authors contend that ultimately

2Nashif, et al., Vibration Damping, Wiley, 1985, pp 142, 145,
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the use of finite element software probably holds the best promise for
solving very complicated geometric arrangements of wire rope. Nashif,
et al., discuss the merits and pitfalls of such an approach. Treatment
of damping phenomena by this method is far from trivial, however, and
greater insight into the basic mechanisms has been the intent of this
study.

Attempts to date using finite element techniques for this research

period are discussed in Sections 4 and 5.




3. STATIC MODELS

Background

The uses of stranded cables in conventional engineering
applications are well recognized. For rope-selection and handling,
practicing engineers have long depended upon extensive experimental
results, such as those compiled by Scoble (1920-1928) that began to
appear in the early 1900s. More recently, the Wire Rope Board and
federal agencies (1980) have utilized the available empirical data to
provide general guidelines for rope selection. Attempts to correlate
the experimental data have met with some success (Druckers and Tachau,
1945; Huang, 1975), yet these fall short of an in~depth understanding of
the effects of various wire-rope parameters on their static and dynamic
behavior. 1In view of the recently proposed applications of wire ropes
for augmentation of structural damping in large space structures, the
importance of such theoretical static and dynamic investigations has
increased considerably.

Of the various investigations, special significance 1is attached to
the work of Costello and Phillips (1973, 1974) who adopted a more basic
approach to study the static behavior of the cables. Here the cables
were treated as groups of separate curved rods (Love, 1944) in the form
of helices. This static analysis leads to a set of nonlinear algebraic
equations in several variables. These equations are solved
simultaneously using the Newton—-Raphson algorithm. However, the utility

of the analysis is severely limited as it depends on computational
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results obtained for particular cases of cable data. For design, it

would be far more desirable to have the solution in analytical form that
can provide an insight into the influence of the various wire rope
parameters on its deformation characteristics. Such analytical results
may be of even greater significance for the future investigations of

wire rope dynamics.

Summary

To obtain the analytical solutions, we separately consider two
different models of cables (Fig. 3.1). 1In the first, the cable is
assumed to be a single strand constituted by a single layer of an

arbitrary number of thin helical wires. The core is assumed to be

fibrous so that it does not contribute to the strength of the rope

directly. In the second model, the cable has a metallic wire core that
is wrapped around by an arbitrary number of layers of helical wires,
each having its own direction and magnitude of lay. In either of the
two cases, we assume that an axial force, F, and an axial or torsional
moment, M, when applied to the cable cause it to undergo elongation as
well as "twist.” This results in elongation, changes in the lay angles
and helix radii of helical wires in each of the layers. An assumption
of small changes in the wire helix angle and helix radius is utilized to
develop simple governing linear relations for the applied forces and
moments in terms of the linear and rotational cable strains.

A summary of static analyses follows:

a. Cables with Fibrous Cores.

The results characterizing the deformation characteristics can be

summarized as follows:
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(1) The longitudinal strain, £, in the helical wire and the overall

cable strain, €, are related by

E=¢ - Ao cot a . (3.1)

where

lay angle of helical wires when cable is not loaded

o]
1

Aa = increment in helix angle due to the applied load

(1ii) The expression for rotational strain, B, is given by

B = (1+v) € cot a - (Aa/sin?a)[1l - (f-v) coslq] (3.2)
where

v = Poisson's ratio of wire material

f = [1 - sin?qg sinz(w/m){l+sin2(w/m)cosza}}

(1ii) The effective Modulus of Rigidity has been obtained for two
different end conditions:

B = 0: When the free cable end is not permitted to rotate under
end moment constraints, i.e., when B=0, the expression for the effective

modulus of rigidity can be written as

(E)B=O =g sin a (3.3)
_ F
where E = AR
A = metallic area of the cross-section

E = modulus of rigidity of the wire material

{1 - (i+v)cos2q - (l+v){cosz(n/m) - v} cos*a)

oq
]
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M = 0: When the axial (torsional) moment M=0, the expression for

the modulus of rigidity, E, takes the form:

(E) =0 " (E)B=0 1-[1-{sin*a sinZ(n/m)((1l+v)cos?a +(l+vf cos 2a))}/

{4h cosZ?a + sin*a sin2(m/m)((l+v)sin2a cos?a
+(1+vgcos2a)) }1[1={(1/4)s1in20 sin2(x/m)
{(1+v sin22qa)/(1+v)}/g] (3.4)

where

h = [1+{cos2(n/m)-v}cosa? + (1-2v)cos“a]

Figure 3.2 shows a comparison of the values of effective modulus of
rigidity for cables obtained using the above analytical results with the
corresponding numerical rtesults of Costello and Phillips (1976) over the
entire feasible range of a. A generally excellent agreement between the
two is noted, thus establishing the validity of the approximate
analytical approach adopted here.

b. Cables with metallic core

The above approximate analytical approach is now applied to
investigate the various deformation characteristics in a more general
cable model. Here, we consider that the core wire 1is metallic and large
enough to prevent helical wires in a layer from touching each other,
although these wires remain in contact with those in the adjacent
layers. We assume the cable to be made up of n successive layers,
counting from the innermost core which is taken as the first layer. The
results characterizing the deformation properties of such a cable are

summarized below:
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(i) The longitudinal strain in helical wires in the ith layer

denoted by & and the overall longitudinal cable strain, e, are related

by
Ei = e = A ai cot ai » i = 1,2,3,...,1’1 (3-5)
where
aj = original lay angle of the helical wires in the ith layer.
Aaj = increment in the lay angle of the helical wires in the
ith layer when load is applied.
(11) The expression for Aaj can be written as
i-1
Ao, = e(1+v)(1=v,)sin a; cos ai[l -2 Ej=2{(rj/ri)vj}]
- i-l
_B(ri/R)(l-\)i)sin2 ai[l - 2 cot a E. {gj(rj/ri)Z tan aj}]
where
rj = helix radius of the helical wires in the jth layer;
j = 1,2"..’ i,'..,n.
Rj = radius of the helical wires in the jth layer;
j = 1,2,..0, i,ooo,ﬂ.
\)j = \)(Rj/rj) Coszaj; j=1,2,ooo, i, ceeells
R = radius of the cable.
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(iii) The expressions for the applied force, F, and applied moment,

M, can be stated in the following convenient linear form:

F=F€ €+FBB (3.7)

ﬁ=M€€+M86 (3.8)
where

F = F/(AE)

M = M/(ER3)

A = metallic area of cross-section; Z(miRiz)
i
E = modulus of rigidity of the cable material

R = cable-radius

m{ = number of helical wires in the ith layer

Ry = radius of the helical wires in the ith layer

Ri = Ri/R
= 2 a4 3 - 2 / 2
F€ g[miRi sin ai(51n a =V cos ai)],g[miRi ]
= \ 2 s a2 2
F6 iL[miRi (ri/R)51n a; cos ai]/g[miRi ]

= 2 3 2 - 2
M 'n'iZ[miRi cos ai{(ri/Ri)(sin oy v coS ai)

=(1/4)(R; /t )}
M, = nZ[miﬁi“‘ sin ai{(ri/Ri)Z cos? a,

B

+ (1/4)(1+vf sin* a; cos Zai)}]
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Next, we demonstrate the usefulness of the analytical results by
applying these to study some important extensional and torsional

stiffness characteristics of wire ropes.

Effective Modulus of Rigidity (E)

(a) No end rotation; i.e., B=0: Here the expression for the

effective modulus of rigidity can be written as

(E)B=O = Fs = g[miRiZSin ai(sin2 @ = v cos? ai)]ii[miRizl (3.9)

(b) Cable ends free to rotate; i.e., M=0: Here, we obtain

(E)M=0 = Z[miRi2 sin qi(sin2 @ =V cos? ai)]/g(miRiz]

i
- g[miiiz(ri/R) sin? @, cos ai] g[mi§i3 cos a;
{(r; /R )(sin? a; = v cos? ai)-(l/é)(Ri/ri)}]/[g[miﬁiz].

R 4 g1 2 2
g[miRi sin ai{(ri/Ri) cos® a,

+ (1/4)(1+v; sin* o cos2a,)}1] (3.10)
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Effective Torsional Modulus of Rigidity (G)

Effective torsional modulus of Rigidity (G) is given by

G = n[z miﬁi“ sin ai{(ri/Ri)2 cos? a; + (1/4)(l+\)f sint a; cosZai)}
i

- R 3 2 - 2
iZ[miRi cos ai{(ri/Ri)(sin @, = Vv cos ai)

- (M/&)(Ry/r D]

R 3 2 R 2 o3 s 2
iZ[MiRi (ri/Ri) sin a; cos ai]/g[miRi sin ai(51n oy

- v cos? qi)]] (3.11)

To illustrate the ease of application, we consider a specific cable
with the following data:
- First layer (or metallic core):
m =1, o =7/2, Ry =a
~ Second layer:
mpy =6, ap = a, Ry =a
- Third layer:

my = 12, o3 = ma, Ry =a

Evidently, the above three characteristics, (€)8=0’ (E)M=O’ and G,
would be dependent on the value of a chosen. Figure 3.3 shows the
effect of varying this lay angle o on the stiffness properties of the
cable. In all cases, effective extensional modulus of rigidity
significantly decreases as o decreases. The stiffness remains higher,

however, for the case of “"fixed ends"” when the rotational strain is

Zero.
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Figure 3.4 presents the effect of varying o on the torsional
stiffness. Here the trend is reversed as increasing o leads to rapid
fall in the torsional rigidity of the cables. Needless to say, such
plots could be readily generated for any arbitrary situation, thus

facilitating the choice of geometric parameters of the cable.

Application to Dynamic Investigations

To illustrate the usefulness of the analytical results in dynamic
studies, consider a vertically hanging cable clamped at the upper end
and carrying a weight at its free end. The differential equations
governing the cable “"extension—-twist" oscillations (assuming the weight

of the cable itself to be negligible) can be written as

(d2e/de?) = - BB [F_ e+ F, 8] ' (3.12)

(a2g/ae2) = - BEE ¢+ w g (3.13)
where

W = weight of the hanging mass

I = moment of inertia of the mass (related to cable twist)

£ = length of the cable

It is now easy to determine the frequency of the coupled oscillations.
The expression for the natural frequencies (w) of the coupled

oscillations can be written as

w? = (1/2)(Eg/2)[AF¢/W) + (R* Mg/T)

172
J

+{(AF/W-R*Mg/1)2 + 4 AR" FgM_/(WI) 1 (3.14)
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The dimensionless analytical force and torsional moment relations
developed here are rather general. The explicit form of results is
found to be useful in predicting the rope stiffness against elongation
as well as rotation. The examples considered here demonstrate the
computational ease and effectiveness with which the closed-form solution
can be utilized in various studies. The results of the static analyses
would be quite useful in dealing with any general problem of wire rope
dynamics. Finally, the valuable insight thus gained into the relative
deformation behavior of wire strands is likely to facilitate modeling of

energy dissipation in the rope through internal rubbing action.




4, SIMPLEST DYNAMIC MODELS

One-Dimensional Models

It is possible to postulate several spring-mass—-damper one-—
dimensional isolator models. These models include an undamped model, a
rigidly connected Coulomb damper model, and an elastically connected
Coulomb damper model. In Fig. 4.1 is shown the wire rope vibrator
isolator being modeled, and in Figs. 4.2 through 4.4 are shown the
simplest mathematical models studied.

For the isolator shown in Fig. 4.1, an experimental study has been
performed to determine the frequency response characteristics. The
experimental arrangement consisted of exciting the base vertically.
Most of the isolator frequency response data is presented in Appendix A.

In Table I are shown the numerical values of acceleration and
displacement for the isolator base and center mass shaker test. A plot
of this experimental data appears with analytical curves discussed and
referred to below.

For use in an analytical comparison, an experimental stiffness
curve has been obtained. The arrangement used for the stiffness
measurements was as follows. The isolator was mounted vertically;
upside—down from the position shown in Fig. 4.l. A horizontal metal
strip was attached to the ceanter mass of the isolator with an LVDT
arranged at its opposite end to measure mass displacement. The
procedure used in the measurements was to apply known static loads to

the isolator center mass and monitor the downward displacement by use of

19
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the LVDT and a voltmeter. The stiffness curve is shown in Fig. 4.5 and
is seen to be nonlinear. The average stiffness is approximately 100
1b/in.

The governing equation of motion for the model shown in Fig. 4.2 is

Mx + K(x=u) = O (4.1)

where x and u are positive as shown in the figure and M and K are the
mass and stiffness, respectively. The weight of the center mass for the
isolator is 0.1359 1b, and the stiffness used (an average value) is
97.656 1b/in. Equation (4.l1) was solved using the Advanced Continuous
Simulation Language (ACSL) in preparation for more involved model
solutions. A listing of the program is shown in Fig. 4.6. 1In Fig. 4.7
is shown a comparison of the frequency response for the experimental
arrangement, previously described, and the undamped model of Fig. 4.2 as
solved by ACSL. The mass displacement for the undamped model is higher
than the mass displacement for the real isolator at all frequencies as
was expected. However, Fig. 4.7 does show that the undamped one-
dimensional model displays the same basic behavior as that of the real
isolator. Of course, the response of the undaméed model increases
without bound at the natural frequency of the model. The natural
frequency of the undamped model is approximately 84 Hz, while the
resonant frequency of the real isolator is approximately 75 Hz. Figure
4.7 is significant because it shows that one-dimensional models hold
promise for modeling the behavior of, at least, the uni-axial motion of
the isolator. From these results, it would be expected that by
incorporating damping into the model, good results would be obtained.

This was the next step taken in the analytical study.
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It has been surmized that the damping in wire rope isolator systems
is dry friction, or Coulomb, damping. By incorporating a friction force
in the equation of motion, a mathematical model of the system shown in

Fig. 4.3 is obtained. The equation of motion is

Mx + K(x-u) + sgn(x) Fe = 0 (4.2)

where Fg is the Coulomb friction force which always opposes the motion
of the mass. As a first approximation, it was assumed that the friction
force is constant for all frequencies. Using a constant force of 2.25
1b, the mass displacement response shown in Fig. 4.8 was obtained, again
using ACSL. It is seen that the model is overdamped for most of the
frequency range. Tﬁése results led to the investigation of frequency
dependence of the friction force Fg. It was found that for low
frequencies (below 60 H,) the analytical mass response 1is not as
sensitive to changes in the friction force Fg¢ as it is at higher
frequencies. Using the values of Fg¢ shown in Table II, the frequency
response shown in Fig. 4.9 was obtained. It is seen that this model is
in much better agreement with experiment than the model which assumes no
frequency dependence of the friction force. It is interesting to note
that for the Coulomb-damped models, the natural frequency is about 80
Hz, slightly lower than the resonant frequency of the undamped modél.
The insensitivity of the Coulomb-damped model to changes in Fg at
low frequencies suggests that the isolator might best be modeled as an

elastically connected Coulomb damper system as shown in Fig. 4.4.
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To date, good results as described above have been obtained for the

displacement response of the Eq. (4.2) model. An analytical hysteresis
loop, generated by the ACSL model with variable friction force, is shown
in Figure 4.10. The acceleration response of the mathematical model,
however, has not agreed well with experiment. This needs further

study.

NASTRAN Single Loop Model

A NASTRAN bar element model in the form of an ellipse has been
generated. Table III is a program listing. There are 100 grid points
symmetrically arranged to match geometrically the single wire rope loop
test to be described. Those grid points in the region of the clamped

portion of the ellipse are fixed against any movement; those in the

région of the sliding block (to be described) are allowed only .
translation in the direction perpendicular to the plane of the loop.

All other grid points are allowed six degrees of freedom. A restricted
parameter study has been carried out with the following as parameters:

E, G, A, I, Iy, and J. Appendix B summarizes the computation of
several of these.

A tentative conclusion_at this point is that varying E and G can
result in a stiffness value equal to that obtained experimentally;
however, questions still remain concerning the validity of the
parameter values used. In general, E and G values seem to have to be
lowered an order of magnitude more than those reasonably expected in

order to agree with experiment. This geometric (looped) case has not

yet been solved analytically like the other simpler cases in SECTION 3,

however. ‘
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Single-Loop Wire Rope Tests

A single wire rope loop has been mounted in a special device which
has the capability to clamp one “side" of the elliptical loop. The
opposite "side," though free to move perpendicularly to the plane of the
wire rope loop, prevents the wire rope from experiencing any degrees of
freedom other than this one. In this manner, one "loop™ of a typical
wire rope isolator is simulated. The means by which such a restrictive
motion is accomplished is through the use of two low friction linear
bearings which fit closely on a close tolerance shaft. The block which
houses the bearings also has the means to clamp the moving “side" of the
wire rope loop. Figure 4.11 is a photograph of this particular test
arrangement. Interestingly, if only one half of the wire rope loop is
attached, the bearings and their housing “roll" about the shaft as the
loop is moved perpendicular to its plane. No such "roll"™ is observed
with a symmetrical loop in place.

No attempt was made to match the size of wire rope tested in the
aforementioned device with the actual size used for the candidate
isolator. This is primarily due to the impractical small bearing/shaft
dimensions required to do so. Instead, it was decided that a larger
loop would exhibit a phenomenon similar to a smaller loop and our
research would center on exploration of such at present.

To date, tests have been performed primarily to ascertain wire rope
stiffness values for comparison with the NASTRAN model already
described. The arrangement should be more significant when the static

models in Section 3 are extended to the combined bending/twisting case,
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and/or the bending/twisting/extension case which should more
realistically describe the isolator application.

Another test being planned is a dynamic test to determine the
hysteresis loop for a single wire rope loop. It is very likely that
this will have to involve two loops (both in the same plane,
symmetrically arranged to each side of the bearing/shaft movement) and a
special two-point shaker excitation scheme with at least two dynamic
force gages.

Using traditional terminology of a 2a x 2b elliptical loop of wire
rope, loops with large values of a/b are less stiff than those with a/b

values approaching unity. The table below gives specific experimental

values:
2a 2b  Lgth of Cable Stiffness ‘
a/b (inches) (inches) (inches) (1lbs/in.)
1.11 2.5 2.25 7.461 5.138
1.22 2.75 2.25 7 .854 3.292
1.44 3.25 2.25 8.639 2.144

Experimental force versus deflection curves, while not shown, are

reasonably linear.

Isolator—Supported Momentum Wheel Equations

Consider a momentum wheel of mass M supported by three
symmetrically spaced uniaxial isolators. The momentum wheel, while
symmetrical, has an unbalanced mass m offset by a distance e from its
spin axis. Figure 4.12 shows both a side view and a top view of the
disc, axes, etc. For the spin axis z, and an imaginary fixed plane
which contains m and e located by the cqordinaté ¢ from x, the modified

Euler equations are (Meriam, 1975):
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™Mo=I_ 0 -(I_-1 )00 +1 ¢
X XX X yy 2z'yz zz"''y
ZMy = Iyy szy - (IZZ-IXX)QZQX - 1,69 (4.3)

zMZ = IZZ QZ + IZZd>

Using Fig. 4.12 and assumlng that the eccentric mass m is a distance h

above point O, the left-hand sides of Eqs. (4.3) can be found to be

ZMX = - mg e sing + Rchos ap - Ro R cosa, + R2R sina3

° . .2
+ me(Qz + ¢)h cos¢ - me(Qz2 + ¢ )h sin ¢

ZMy = mge cos¢ - RR sin a; + R,R cosag - ROR sin a, (4.4)
.2 L4 ..
+ me(Qz2 + ¢ )h cos¢ + me(QZ + ¢)h sing
| = = 2. . | _
™, me (Qz + 4) + M_(t) ’%RRC
where a =Qc+n/2-120°=Qt+2n-in=gt-1
1 6 6 z 6
a2=21r-%1r-9t=%—§lzt
= 2 - i
on3—Qt+1r—2(-3—‘n)-ta—-3—
and R, = tangential reactlons at each isolator pair.

The simplest form of the support forces would be in the form of k -

times deflection. These are
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Rl = kl(Rexcos a; = Rey sin al)

R2 = kZ(Rex sin ag + Rey cos 63) (4.5)
R =- ko(Rex cos a, *+ Rey sin az)

R, = k. R¢

Actually the k's shown in Eq. (4.5) will be modified to reflect a more
realistic Coulomb friction support action.
The mass moment of inertia of the disc referred to point O,

ignoring the eccentric mass m (m<<M), is

§ (1 MR2 + L+ M(2h)2 0 0 |
! A 3
(1] = 0 L yr2 + Lyony2z o (4.6)
} o A 3 ¢
) 0 0 Lo
7

Also needed are the relationships between the 6's and Q's which are

8, = [ Q.dt 8,(0) = 0°
8y = [ Qudt 8,(0) = 0° (4.7)
o 6, = [ 9ydt 8,(0) = 0°

| The set of equations ((4.3) through (4.7)) can be solved for the
highest ordered derivatives and integrated numerically. A scheme to do
this with ACSL is shown in Fig. 4.13 with the additional capability of

incorporating the successful ﬁode1—with—variable—friction-force ianto the
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simulation as a multiply-invoked MACRO. Vector integrators can be
conveniently used to handle the 6§ and Q relationships. Vector
operations are shown in Fig. 4.13 by the {'} brackets. A parameter

which would be a measure of successful isolation is postulated as

= p4 < <
® ax /ex +ey + ¢ (4.8)

Opax equals zero would be perfect isolation. It should be noted that
the three variables in Eq. (4.8) vary with time, in general, so that
peak-to-peak or rms values would be most meaningful for the general
case. Actual parametric runs on the computer exceed the scope of this
phase of the research. An anticipated form of the output is shown in

Fig. 4‘14'



5. ADVANCED DYNAMIC MODELS

Basic Finite Element Models

For the purpose of preliminary analysis, three NASTRAN finite
element models have been developed. Two of these ;re complete models
(i.e., including all seven strands—-—six wound and one maiden) of a line
segment of the cable. The other is an incomplete model of the same line
segment, which has been developed as a geometric check for the complete
models.

The incomplete model, hereafter referred to as "the two strand
model,” was the first to have been developed. This model consists of a
maiden strand around which a single strand is wound (see Fig. 5.1).
Both the maiden and the wound strands are subdivided into 276 elements;
each strand requiring 1932 grid points for definition. The hexagonal
cross section of each strand consists of six triangular segments (see
Fig. 5.2). Each triangular segment represents the upper (or lower)
surface of solid "pie~shaped” PENTA elements (solid triangular elements
used in MSC-NASTRAN). Figure 5.3 shows a typical PENTA element. The
thickness of.each element (0.002 inches) is twice the length of each
element. This results in the maiden strand being 0.09 inches in length
and 0.002 inches in diameter. That 1is, the line segment modeled has a
L/D ratio of 45.

The wound strand forms a helix angle of 72 degrees. Both strands
are connected by scalar elastic elements (springs), which were
incorporated to model the normal forces acting on each strand. Figure

5.2 shows the arrangement of the scalar elastic elements.

28
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The complete models are similar to the two strand model with one
exception; that is, the complete models consist of a maiden strand and
six wound strands. Hence, the name, "seven strand model.” The wound
strands are connected to the maiden strand and to adjoining wound
strands by springs. A typical cross section of a seven strand model is
shown in Fig. 5.4. Also shown in this figure is the arrangement of the
spring elements.

The difference in the two seven-strand models occurs in their
boundary conditions. Both models are suspended at one end. The first
model has the other end free, thus forming a fixed-free line segment of
the wire rope (see Fig. 5.5). The second model has a mass attached to
the other end of the wire rope (see Fig. 5.6). This model has been
designated as simply "the pendulum model”. The tip mass, M, is one and

one—-half times as heavy as the wire rope.

Equations of Motion

The deformation of the cable was modeled using the assumed modes
method. Using this method, the position vector of a generic mass
element (see Fig. 5.7), dm, can be expressed as

m

£, = $. 9. (5.1)
dm j=1 2373

where Qj are the mode shape vectors, and qj are the generalized
coordinates. The mode shape vectors, Qj’ are functions of the
undeformed coordinates, x,, y,, and z,. They were obtained from the MSC

NASTRAN finite element models described above.
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The equations of motion were obtained via a Lagrangian approach.
To formulate the Lagrangian, the potential and kinetic energies of the
wire rope segment are required. The former is the sum of the elastic
and gravitational potential energies. For the contribution due to the

elasticity of the system, we can write

K q (5.2)

where ES is the system's stiffness matrix and q = (q1 q2...qn)T.
The following assumptions were made in order to formulate the
gravitational potential energy:
i. length of segment = L
ii. mass per unit length = ¢
iii. small displacements in the xz-plane
With these assumptions, the expression for the gravitational potential

energy becomes

V = 1/2 qF
g /2 q

=

. q (5.3)

where Eg is the gravitation stiffness matrix. The matrix, §g is given

by
N-1 L zo
kK =1/2 | [ o [°18'17[2']d¢E dz_ (5.4)
g i=0 "0 0
d
where 2' = (IOO)EE (¢) and $ = (91 92...gm). In the case of the

pendulum model, the gravitational stiffness matrix also has the

following term added to it:
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L
11T 40
1/2 M fotg 1M1g"] dz

With the cable fixed at the upper end, the kinetic energy of the

pendulum system can be expressed as

N-l oT oT
T =1/2 ‘2 JEgptgq dm+ /2 M £ (5.5)
i=0 m,
1
where idm and im are the velocities of a generic mass element, and the

tip mass, respectively. N represents the number of strands included in
the model. The strands are numbered such that the maiden strand is i=0,
and the others are numbered in a counterclockwise manner beginning with
i=1l. Using Eq. (5.1), the expression for the kinetic energy can be

rewritten as

T

T=1/2q Mg (5.6)
where M is the generalized mass matrix given by
N-1 T T
M= ] [ & &dn+ M) [¢] (5.7)
i=]1 m,

i
where the bracketed ¢ terms are evaluated at the lower end. For the
seven-strand model without the weight, the second term in Eq. (5.7) is
neglected (i.e., M=0).

The nonconservative forces acting on dm are assumed to be due to
viscosity and Coulomb friction between the strands. Generalized viscous

damping forces are modeled as

Q =-C2l (5.8)

1Oe
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where [ D ] is a diagonal matrix of structural damping coefficients.

The generalized Coulomb damping forces are obtained from
N~

1 T
Q=1 [ ¢ f dn (5.9)
=0 m, i

c
1

where gdm denotes the force on an element dm of the ith strand. 1If p

i
denotes the coefficient of friction between the strands, and fij denotes

the magnitude of the normal force between the ith and jth strands, then

for the maiden strand, ﬁdm becomes
o

A A A A

N~-1
ﬁdm = .Z H fOi sgn[(gdm - Edm,) (Eisi + hiéi) (5.10)
o] i=] o i

-

Ei and Ei are the unit tangent and binormal vectors, respectively, of

dmj;+ For the other strands, we have

~

ﬁdmi - u{foi sgn[(gdmo- Edmi).(EiEi * 1-):il-)i)]

= fyy osenllZyy = Iyp )e(Egky *+ Byby)l

. dm
1 ]
= g s8nl(Eyy = g )+Cegty + by )] (3.11)
i k
with
i 1 2 3
ilo= 20, I3l , lal, ... (5.12)
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The unit tangent and binormal vector are given by

t, = cos al- sin 61 i + cos 6i 1] + sin a k
and
Ei = gin al[sin 6i 1 - cos ei 1] + cos a k

where ei(zo) is the angle of the center line of the 1th strand at Z,e

The equations of motion are then obtained from

d 3Ly _ o _ T
dt { -} aq Q, * ) (5.13)
3q
where £ = T - VS-Vg. The resulting equations of motion are
M.q, +d.d, +K q, K. q=0Q
37 373 J 1 —g] - c

3

where Mj, dj, and Kj are the generélized mass, damping goefficient aad

: th

stiffness coefficient, respectively, for the j vibrational mode.

Eg. is the jth row of §g, and Qc. is the jth element of Qc.
J J
Discussion
Complete normal mode analyses have been performed on the finite

element models previously discussed. The cases of primary interest are
the two seven—strand models. The information acquired from these
analyses are twofold. First, the mode shape vectors, Ej are necessary
to define the deformation of the structure in the analytical equations.
Figures 5.8-5.9 are typical mode shape plots. Second, the contact

forces normal to the strands, fij’ have also been obtained from these

analyses.
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It has been observed that for several of the vibrational modes, the
lower end of the cable, whether free or weighted, has a tendency to
separate. When this occurs, the contact forces normal to the strands
become negative (i.e., the forces in the springs (scalar elast;c
elements) become tensile instead of compressive). For these cases, the
negative forces are neglected since they would not contribute to Coulomb
damping. Another tendency displayed in these analyses is the slipping
between strands. Figure 5.10 shows a typical case.

A simulation code has been adopted to perform the “analytical”
calculations. The inputs for this code are the mode shape vectors and
the contact forces. Results from this code are expected in the next

phase of this research.




6. CONCLUSIONS

The phenomena assoclated with wire rope damping is quite
complicated. A macro approximation of it using a uniaxial Coulomb
damper with a variable friction force has ylelded very good results of
isolator response. Varioﬁs NASTRAN models have been developed which are
beginning to provide the kind of analytical capability and insight
required for modeling of arbitrary complicated wire rope arrangements.
Several other dynamic models have been explored. Beginnling experimental
studies have shed some light on appropriate wire rope characteristics
related to static properties, damping, and dynamic response.

Significant progress in deriving closed form solutions for wire rope
static properties has been éccomplished and thelr extension to dyﬁamic

applications has begun.
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Fig. 3.1

SECTION X-X

NOTES: SECTION X-X

FOR ROPE WITH FIBROUS CORE
HELICAL WIRES CONTACT

a=r b = R

FOR ROPE WITH METALLIC CORE
HELICAL WIRES DO NOT CONTACT (SHOWN)

a =ry b=R1'

Rope geometry with mp = 6 and m} = 1.
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Fig. 3.2 Plots comparing the analytical and numerical values of
effective modulus of rigidity of wire rope for the practical
range of a.
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Fig. 3.3 Modulus of Rigidity as affected by the helix angle.
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Fig. 3.4 Torsional Stiffness as affected by the helix angle.
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Figure 4.1 Wire rope vibration isolator.
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Figure 4.2 Undamped single-degree-of-freedom model.
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Figure 4.3 Rigidly connected Coulomb damper model.
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Figure 4.4 Elastically connected Coulomb damper model.
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Fig. 4.5 Isolator force versus displacement curve.




PROGRAM ISOL

INITIAL _
CONSTANT  MASS=.1359 , G=386.4 , SLOPE=97.656
CONSTANT  N=0.0 , OMEGA=40.0 , UZERO=.0840
CONSTANT  TDEL=0.0 , PI=3.1416 , PHASE=0.0
CONSTANT  TSTOP= 6.0 , X0=0.0 ,  XD0=0.0

TABLE FF, 1, 14
/ 10.0, 20.0, 40.0, 60.0, 70.0 ...
, 75.0, 80.0, 100.0, 120.0, 140.0 ...
,  160.0, 180.0, 200.0, 250.0 .o
, 0.75, 0.85, 1.25, 0.15, 0.10 ...
, 0.10, 2.25, 1.45, 0.50, 0.005 ...
,  0.007, 0.007, 0.004, 0.004
CINTERVAL CINT=0.002 -
END § 'OF INITIAL'
DYNAMIC
W = 2.%PI*OMEGA
DERIVATIVE
F1 = UZERO*XHARM(TDEL,W,PHASE)
XDD = ~G/MASS*(SLOPE*(X-F1) + FF(OMEGA)*SIGN(1.0,XD))
XD = INTEG(XDD,XDO)
X = INTEG(XD,XO)
END $ 'OF DERIVATIVE'
TERMT(T.GT.TSTOP)
END $ 'OF DYNAMIC'
END $ 'OF PROGRAM'

Fig. 4.6 Listing of ACSL program for Coulomb friction model
with variable friction force.



Frequency Base Peak Base Disp.

(Hz)

10
20
40
60
70
75
80
84
100

120

160
180
200
250

300

TABLE I.

Accel.
(g's)

1.1
2.9
6.1
8.3
7.6
7.6

10.2

12.6
12.2
11.8

1l.1

Run 2 Vertical

(in.)

0.302
0.170

0.084

0.051

0.033

0.028

0.034

0.032

0.024

0.016

0.012

0.008

0.006

0.004

0.0025

Mass Peak
Accel.
(g's)

l.1
3.0
7.7
18.5
40.1
50.6

31.3

15.5
11.45
9.6
8.2
7.1
6.3
5.6

4.3

ISOLATOR VIBRATION TEST DATA

Mass Disp.
(in.)
0.309
0.180
0.103
0.113
0.181
0.191

0.105

0.030
0.014
0.012
0.004
0.002
0.003

0.0003

Relative Disp.
(in.)
.0070
.0100
.0190
0620
.1480
.1630

.0710

0060
-.002
-.004
-.004
-.004
-.001

.0005
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TABLE II. ONE POSTULATED VARIATION OF FRICTION FORCE WITH FREQUENCY.

Frequency (Hz) Fe (1b)
10 0.75
20 0.85
40 1.25
60 0.15
70 0.10
75 0.10
80 2,25
100 1.45
120 0.50

Al40 0.005
160 0.007
180 0.007
200 0.004

250 0.004
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TABLE III. NASTRAN SINGLE LOOP MODEL

ID WIRE ROPE ISOLATOR SINGLE LOOF LINE ELEMENT MODEL
TIME 100

SOL 24

CEND

TITLE=WIRE ROPE ISOLATOR SINGLE LOOP LINE ELEMENT MODEL
SUBTITLE= 1.25" MAJOR AXIS AND 1.125" MINOR AXIS
LABEL= STATIC LOADING MODEL
ECHO=BOTH

SET 10 =1,76,51
DISPLACEMEXNT=10

SUECASE 1

LABEL= .302 LB STATIC LOADING
LOAD= 101

SUBCASE 2

LABEL= .6%52 LB STATIC LOADING
LOAD= 102

SUEBCASE 3

LABEL= .852 LB STATIC LOADING
LOAD= 103

SUBCASE 4

LABEL= 1.052 LB STATIC LOADING
LOAD= 104

$OUTPUT(PLOT>

$SPLOTTER NAST

$SET 1 =ALL

$VIEW 0.,0.,0.

$AXES Z,X,Y

$FIND SCALE ORIGIN O, SET 1
$PTITLE=WVIRE ROPE ISOLATOR SINGLE LOOCP LINE ELEMENT MODEL
$PLOT SET 1, ORIGIN O, SET 1
BEGIN BULK
GRID,1,,-1.25,0.0,0.0,,
GRID,2,,-1.20,.315,0.0,,

GRID, 3,,-1.15,.440908,0.0,,
GRID,4,,-1.10, .5343454,0.0,,
GRID,5,,-1.05,.6104097,0.0,,
GRID,6,,-1.00,.675,0.0,,
GRID,7,,-.9%5,.7311635,0.0,,
GRI1D,8,,-.9,.7807208,0.0,,
GRID,9,,-.85,.8248636,0.0, ,
GRID, 10,,—-.80,.8644218,0.0,,
GRID, 11,,-.75,.9,0.0,,

GRID, 12,,-.70, .9320542,0.0,,

GRID, 13,,-.65,.960937, 0.0, ,

GRID, 14,,-.60, .986827, 0.0, ,

GRID, 15, ,-.55,1.010248, 0.0, ,

GRID, 16, ,-.50,1.031080, 0.0, ,

GRID, 17,,-.45,1.049571,0.0,,

GRID, 18,,~-.40,1. 065845, 0.0, , 123456

GRID, 19,,-.35,1.08,0.0,,123456




GRID, 20, ,
GRID, 21, ,
GRID, 22, ,
GRID, 23, ,
GRID, 24, ,
GRID, 25, ,
GRID, 26,
GRID, 51,
GRID, 50,
GRID, 49,
GRID, 48,
GRID, 47,
GRID, 46,
GRID, 45,
GRID, 44,
GRID, 43,
GRID, 42,
GRID, 41,
GRID, 40,
GRID, 39,
GRID, 38,
GRID, 37,
GRID, 36,
GRID, 35,
GRID, 24,
GRID, 33,
GRID, 32,
GRID, 31,
GRID, 30,
GRID, 29,
GRID, 28,
GRID, 27,
GRID, 52,
GRID, 53,
GRID, 54,
GRID, 55,
GRID, 56,
GRID, 57,
GRID, 58,
GRID, 59,
GRID, 60,
GRID, 61,
GRID, 62,
GRID, 63,
GRID, 64,
GRID, 65,
GRID, 66,
GRID, 67,
GRID, 68,
GRID, 69,
GRID, 70,

P RRRe RO |

e ® e % w w e W e w e e e w e W e W e W e w e e w o w W e W e e e % e % e % e e o= e e = ow

.30, -1.

-.30,1.092120,0.0,, 123456
-.25,1.102270,0.0,, 123456
-.20,1.110507,0.0,, 123456
-.15,1.116871,0.0,, 123456
-.10,1.12139,0.0,, 123456

.05,1.124100,0.0,, 123456

.0,1.125,0.0,,123456

.25,0.0,0.0,,

.20, .315,0.0,,

.15, .440908,0.0,,

.10, .5343454,0.0,,

.05, .6104097,0.0,,

.00, .875,0.0,,
.95,.7311635,0.0,,
.9,.7807208,0.0,,

.85, .8248636,0.0,,

.80, .8644218,0.0,,
.75,.9,0.0,,

.70, .9320542,0.0,,

.65, .960937,0.0,,

.60, .986827,0.0,,
.55,1.010248,0.0,,
.50,1.031080,0.0,,
.45,1.049571,0.0,,
.40,1.065845,0.0,,1223456
.35,1.08,0.0,, 123456
.30,1.002120,0.0,, 123456
.25,1.102270,0.0,, 123456
.20,1.1105%07,0.0,,123456
.15,1.116871,0.0,,123456
.10,1.12139,0.0,,123456
.05,1.124100,0.0,,123456

.20,-.315,0.0,,

.15,-.440908,0.0,,

.10,-.534345,0.0,,

.05,-.610410,0.0,,

.00,-.675,0.0,,
.95,~.731164,0.0,,
.9,-.780721,0.0,,
.85,-.824864,0.0,,
.80,-.864422,0.0,,
.75,-.9,0.0,,
.70,-.932054,0.0,,
.65,~.960937,0.0,,
.60,~.986827,0.0,,
.55,-1.01025,0.0,,
.50,-1.03108,0.0,,
.45,-1.04957,0.0,,
.40,-1.06585,0.0,, 12456
.35,-1.08,0.0,,12456

090212,0.0,,12456



GRID,71,,.25,—1.10227,0.0.,12456'_
GRID,72,,.20,-1.11051,0.0,,12456 2
GRID, 73,,.15,-1.11687,0.0,, 12456
GRID,74,,.10,-1.12139,0.0,,12456
GRID,75,,.05,-1.12410,0.0,,12456
GRID,76,,0.0,-1.125,0.0,, 12456
GRID,100,,-1.20,-.315,0.0,,
GRID,99,,-1.15,-.440908,0.0,,
GRID,98,,-1.10,-.534345,0.90,,
GRID,97,,-1.05,-.61041,0.0,,
GRID,96,,-1.00,-.675,0.0,,
GRID,95,,-.95,-.731164,0.0,,
GRID,94,,-.9,-.780721,0.0

?
¥
1]
’

GRID, 83,,-.85,-.824864,0.0,,
GRID, 92,,-.80,-.864422,0.0
GRID,%1,,-.75,-.9,0.0,,

GRID, 90,,-.70,~-.932054,0.0,,

GRID, 89,,-.65,-.960937,0.0,,
GRID, 88,,-.60,-.986827,0.0,,
GRID,87,,-.55,-1.01025,0.0,,
GRID, 86,,-.50,-1.03108,0.0,,

GRID, 85,,-.45,-1.04957,0.0,,
GRID,84,,-.40,-1.06585,0.0,, 12456
GRID,83,,-.35,-1.08,0.0,, 12456
GRID,82,,-.30,-1.09212,0.0,, 12456
GRID,81,,-.25,-1.10227,0.0,, 12456
GRID,80,,-.20,-1.11051,0.0,, 12456
GRID, 79,,-.15,-1.11687,0.0,,12456
GRID,78,,-.10,-1.121839,0.0,,12456
GRID,77,,~.05,-1.12410,0.0,, 12456
FORCE, 101,76,,.302,0.0,0.0,1.0
FORCE, 102,76,,.652,0.0,0.0,1.0
FORCE, 103,76,,.852,0.0,0.0,1.0
FORCE, 104,76,,1.052,0.0,0.0,1.0
CBAR,1,35,1,2,0.0,1.0,0.0

=, k(1) , =, (1), k(1) , =

=97

CBAR, 100,35,100,1,0.0,1.0,0.0

PBAR, 35,75, 0. 013829, 1.05312-5, 1. 95312-5, 3. 90648-5
MAT1,75,30.+5,11.54+5,,7.324-4

PARAM, GRDPNT, 1

PARAM, WTMASS, 0. 0025907

ENDDATA
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BH = Bearing Housing SS = Shaft Support
DOCM = Direction of Constrained UC = Upper Clamp
Motion (of BH & UC) WRL = Wire Rope Loop

LC = Lower Clamp
S = Shaft (fixed in both SS's)

Fig. 4.11 Single loop wire rope experimental arrangement.
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Figure 4.12 Momentum wheel with three isolator support pairs.




PROGRAM

i

—1—‘END $ "OF DERIV*

END $§ "OF PROGRAM"

MACRO ISOPAIR(N)

“ONE-DIMENSIONAL COULOMB FRICTION MODEL W/VARIABLE FRICTION"
“e.g., MOST OF FIG. 4.6 CODING SLIGHTLY MODIFIED“

MACRO END
ARRAY I(3)
CONSTANT

INITIAL
"COMPUTATION OF IXX,IYY,IZZ, AND m x e"
"CONVERSION OF IC'S TO RADIANS AND RAD./SEC."

END

DYNAMIC

DERIVATIVE
T

“INPUT OF M,e,R,K's,h,m, INITIAL CONDS."

"ROTATIONAL EQS. FOR MOMENTUM WHEEL W/3 SYMM.-SPACED, PAIRED

ISOLATORS"®

“FUNCTION OF MASS, e, I'S, a's, Q's, Q's, ¢, &, R AND 3 ISOLATORS®

ISOPAIR(1)
ISOPAIR(2)
ISOPAIR(3)

{a} = {g(t,2,)}

INVOCATION OF MACRO'S

THETMAX = SQRT(6X**2 + 0Y**2 + ¢**2) $§ "A MEASURE OF ISOLATION"

END $ “OF DYNAM"

Figure 4.13. ACSL model definition arrangement -

wire rope 1solated momentum wheel
([« S +] denotes sorted sections).
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Figure 4.14 Planned output arrangement for isolator-supported
investigation.




Fig, 5.1. NASTRAN model of two-strand wire rope.
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Fig. 5.2 Cross section of two-strand wire rope showing finite elements.
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Fig. 5.5. NASTRAN model of seven-strand wire rope without

end mass.



Fig. 5.6. NASTRAN model of seven-strand wire rope
with end mass.




Fig. 5.7. Two-strand wire rope.
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Fig. 5.8. Typical mode shape showing end separation
(no end mass).




Fige 5.9. Typical mode shape showing end separation
(with end mass).



Fig. 5.10. Typical mode shape showing slipping between
strands.




APPENDIX A. ISOLATOR SHAKER TESTS

A comparison of the accelerations of the .isolator base and the
center mass is shown in Fig. A-1 and the displacements of the mass and
the base are shown in Fig. A-2. Isolator transmissibility and
effectiveness as functions of frequency are shown in Figs. A-3 and A-4
respectively. Transmissibility 1is defined as the ratio of mass
displacement to base displacement, and 1solator effectiveness is defined
as one minus transmissibility. While the behavior shown in these
figures may not seem atypical to that of other vibration isolation
systems, Fig. A-2 shows a displacement much like that of materials with
high loss factors (see pp. 133-134 of Nashif, et al. (1985)) or

benefictal damping (see pp. DDD-3 and DDD-16 of Rogers (1984).
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Figure A-3
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ISOLATOR EFFECTIVENESS

Figure A-4
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APPENDIX B. WIRE ROPE PROPERTIES

The area moments of inertia used in this NASTRAN model are found by
using I for a circle of radius r for each wire making up the wire rope
in combination with the parallel axis theorem. For six strands plus a

core strand,

I =7 I_+ [ar2(26)2]2 + [ar2(r2)]4 = 2T 12 (B.1)

It can be shown that any orientation of the axes yields the same result.
For the cable used in the experimental arrangement (one with a

non—-fibrous core), Eq. (B.l) yields

I =1 = 1.04293 x 1075 in" (B.2)
X y

where r = D/6 and D = 0.133 in. The polar moment of imertia is given

by

J=1 +1 = 2,085 x 1075 in" (B.3)
X y

Various areas were calculated, based on different assumptions, but were
found not to affect the stiffness calculated from the NASTRAN output.
Increased confidence in the static results from the model is
anticipated prior to extensive dynamic runs of the model; however,
various schemes for including damping in the NASTRAN model and for

producing the resulting hysteresis loops have been initiated.

B-1




